AUTORES: Manuel Aguilera
Revista de Matemáticas Aleph, Volumen 10, Año 2024
PALABRAS CLAVES: Miyamoto-Moses circle, scalene acute triangle, plane geometry, circles generated, illustrations
RESUMEN
The Miyamoto-Moses circle is a circle derived from a scalene acute triangle, which was introduced in mid-2023. This article showcases illustrations of this circle, certain of its properties, and depictions of other circles and triangles generated from it.
BIBLIOGRAFÍA
[1] C. Kimberling, Enciclopedia of Triangle Centers: Miyamoto-Moses Points = X(53006)-X(53007), available online at the URL: https://faculty.evansville.edu/ck6/encyclopedia/ETCpart27.html#X53006
[2] E. Jkh, Romantics of Geometry: Problem 13035, available online at the URL: https://www.facebook.com/groups/1019808738132832/user/100089799874190/
[3] C. Kimberling, Enciclopedia of Triangle Centers: X(39) = Brocard Midpoint, available online at the URL: https://faculty.evansville.edu/ck6/encyclopedia/ETC.html
[4] C. Kimberling, Enciclopedia of Triangle Centers: X(115) = Center of Kiepert Hyperbola, available online at the URL: https://faculty.evansville.edu/ck6/encyclopedia/ETC.html
[5] E. Weisstein, MathWorld–A Wolfram Web Resource: Kiepert Hyperbola, available online at the URL: https://mathworld.wolfram.com/KiepertHyperbola.html
[6] C. Kimberling, Enciclopedia of Triangle Centers: X(10489) = Perpsector of ABC and Cross-Triangle of ABC and Mir-Arc Triangle, available online at the URL: https://faculty.evansville.edu/ck6/encyclopedia/ETCPart6.html
[7] E. Weisstein, MathWorld–A Wolfram Web Resource: Contact Triangle, available online at the URL: https://mathworld.wolfram.com/ContactTriangle.html
[8] C. Kimberling, Enciclopedia of Triangle Centers: Miyamoto-Moses Points = X(52805)-X(52834), available online at the URL: https://faculty.evansville.edu/ck6/encyclopedia/ETCpart27.html#X52805
[9] P. Chenghua, T. Kaibin, & C. Xiaoguang. (2017). A class of geometric problems related to Mannheim’s theorem., available online at the URL: https://www.cqvip.com/qk/82667x/201704/671918138.html
[10] H. Zichen, & L. Sheng, Pseudocircle of triangle, Middle School of Xiangshan County, Ningbo, Zhe-jiang, vol 3 (2022)
[11] M. Aguilera., & P. Pavlov, I, Points related to the Aguilera triangle: X(60877)-X(61035). Encyclopedia of Triangle Centers, available online at the URL: https://faculty.evansville.edu/ck6/encyclopedia/ETCPart31.html [12] Altshiller, N. (1915). On the Circles of Apollonius. The American Mathematical Monthly, 22(8), 261-263.



